Cerebral Small Vessel Disease in Early HIV Infection Multimodal imaging findings

Yufen Jennie Chen

Research associate professor Research manager, Center for Translational Imaging (CTI) Neuroimaging

Third Coast CFAR Pilot Awards Seminar 10/2/2023

Northwestern University Feinberg School of Medicine

radiology.northwestern.edu

Background – the dataset

- Chicago Early HIV Infection Study (ACE) unique dataset that includes comprehensive neuroimaging, neurocognitive and blood measures in participants with mean infection duration of 1 year
 - Advanced neuroimaging protocol probing multiple aspects of brain health including structure, microstructure, spontaneous brain activity, iron deposition, and myelination etc.
- Participants recruited between 2008-2014 for baseline and two-year follow-up visits
 - Includes subgroups of infection duration <4mos, 4-12mos, >12mos
 - approximately equal numbers of cART naïve and cART-initiated
 PLWH

Background – motivation

- Prior ACE imaging findings identified abnormalities in regions susceptible to cerebral small vessel disease(CSVD) – basal ganglia, thalamus, cerebellum etc. (Ragin et al. Neurology. 2012; 79(24): 2328, Kelly et al. J Neurovirol. 2014 Oct;20(5):514, Wang et al. Brain Connect. 2011;1(3):207)
- New analysis techniques developed since the original study may reveal new insight
 - The brain as a complex network
 - Fusion of multimodal data

Graph Theory Analysis of RS-fMRI

Presented at Conference on Retroviruses & Opportunistic Infections 2023

Resting State fMRI (RS-fMRI)

Biswal, MRM 34:537-541, 1995

Figure 1. Cerebral networks identified with fMRI. **Resting State Networks and Consciousness** (2012) Lizette Heine, Andrea Soddu, Francisco Gómez, Audrey Vanhaudenhuyse, Luaba Tshibanda, Marie Thonnard, Vanessa Charland-Verville, Murielle Kirsch, Steven Laureys, and Athena Demertzi doi:10.3389/fpsyg.2012.00295

Graph Theory for fMRI

Courtesy of Guixiang Ma

• Models the brain as networks of:

- Nodes: brain regions (e.g. putamen)
- Edges: correlations between different regions
- Graph theory metrics measure how networks are organized

Graph Theory Metrics

Clustering Coefficient

 $C = \frac{1}{n} \sum_{i \in \mathbb{N}} C_i = \frac{1}{n} \sum_{i \in \mathbb{N}} \frac{2t_i}{k_i(k_i - 1)},$

where C_i is the clustering coefficient of node i ($C_i = 0$ for $k_i < 2$).

Path Length

 $L = \frac{1}{n} \sum_{i \in \mathbb{N}} L_i = \frac{1}{n} \sum_{i \in \mathbb{N}} \frac{\sum_{j \in \mathbb{N}, j \neq i} d_{ij}}{n-1},$

where L_i is the average distance between node i and all other nodes.

• Strength $k_i = \sum_{j \in N} a_{ij}$

• Global Efficiency

$$E = \frac{1}{n} \sum_{i \in \mathbb{N}} E_i = \frac{1}{n} \sum_{i \in \mathbb{N}} \frac{\sum_{j \in \mathbb{N}, j \neq i} a_{ij}}{n-1}$$

where E_i is the efficiency of node *i*.

Modularity

$$Q = \sum_{u \in M} \left[e_{uu} - \left(\sum_{v \in M} e_{uv} \right)^2 \right],$$

where the network is fully subdivided into a set of nonoverlapping modules M, and e_{uv} is the proportion of all links that connect nodes in module u with nodes in module v.

• Assortativity

$$r = \frac{l^{-1} \sum_{(i,j) \in L} k_i k_j - \left[l^{-1} \sum_{(i,j) \in L} \frac{1}{2} \left(k_i + k_j\right)\right]^2}{l^{-1} \sum_{(i,j) \in L} \frac{1}{2} \left(k_i^2 + k_j^2\right) - \left[l^{-1} \sum_{(i,j) \in L} \frac{1}{2} \left(k_i + k_j\right)\right]^2}$$

Rubinov, Mikail, and Olaf Sporns. Neuroimage 52, no. 3 (2010): 1059-1069.

1-1

Data analysis (Guixiang Ma)

- Brain divided into 116 regions of interest(ROIs) based on AAL atlas
- Extract ROI timecourses to construct functional connectivity matrix
- Threshold connectivity matrix
- Calculate graph theory metrics
- Compared global metrics between groups using t-test
- Recursive feature elimination to identify top group-discriminating nodes (ChenYW, LinCJ. Feature Extraction: Foundations and Applications.2006; 315-324.)

Wang et al. Front. Syst. Neurosci., (2010) 4:16

Results

Top 5 group-discriminating brain regions based on path length at both timepoints.

Baselii	ne	Two-year follow-up			
l.	Occipital_Inf_R	1.	Parietal_Sup_L		
2.	Temporal_Sup_R	2.	Cingulum_Mid_R		
3.	Cingulum_Mid_R	3.	Vermis_7		
1.	Temporal_Inf_R	4.	Temporal_Pole_Mid_R		
5.	Lingual_R	5.	Frontal_Mid_Orb_L		

Summary

- Global path length longer in HIV group at both timepoints
 Path length=shortest distance between nodes
 Measure of network integration
- Top 5 group discriminating regions changed over time

 suggests network reorganization

Multi-modal Fusion Analysis

Presented at Organization for Human Brain Mapping Meeting 2023

Why data fusion?

- Traditional MRI analysis treat each dataset independently, then overlay the results
 - E.g. fMRI-brain activity, sMRI-tissue health, dMRI-white matter tract integrity
 - Does not inform about interaction between modalities
- Fusion analysis may improve sensitivity to distinguish diseased states
- More relevant today as technological advances allow collection of multiple data types within an experimental session

mCCA+jlCA

- mCCA (multimodal canonical correlation analysis) – allows different mixing profile for each modality
 - Components may not be maximally distinct
- jICA (joint independent component analysis) – assumes same mixing coefficient between features but maximized spatial independence of components
- Combining both can be applied to more than 2 modalities and performs better than either one alone in simulations (Sui et al., 2012)
- Can be extended to more than 2 modalities

J. Sui et al. / NeuroImage 57 (2011) 839-855

Participants & Methods

- Anatomical T1w images tissue volume/health
- Diffusion images white matter integrity/structural connectivity
- Resting state images spontaneous brain activity

	Basel	ine	Follow-up (26.8 ± 10 months)		
	HIV+	CON	HIV+	CON	
N (after image QC)	45 (20 ART)	17	41	16	
Gender, m/f	42/3	14/3	38/3	14/2	
Age, mean \pm SD	33 ± 11	31 ± 8	33 ± 10	32 ± 9	
Plasma HIV RNA (log ₁₀ copies/mL)	3.5 ± 1.48				
CD4+ cell count (cells/µL)	579.4 ± 244.2				

Data preprocessing (Ajay Kurani & James Higgins)

4.

5.

Data fusion

- Estimate number of components for each modality
- Calculate loading coefficient of each component for each participant
- Compare loading coefficients using t-test at both timepoints to identify group-discriminating components
- Correlate loading coefficients to clinical & neuropsych. measures

Baseline Group Discriminating Components

Baseline Correlations To Clinical Measures & Age-Adjusted Neuropsych. Scores

N=45	CD4 nadir	CD4/CD8 ratio	Plasma HIV RNA	CD4+ cell count	Hemoglobin	
GMV1	0.42*	0.14	0.07	0.43*	-0.08	
GMV2	0.37	0.22	-0.05	0.43*	-0.17	
GMV6	0.36	0.15	0.01	0.38	-0.11	*p<0.005
GMV7	0.45*	0.20	-0.08	0.44*	-0.07	

	Verbal	Visual						
Domain	memory	memory	Psychomotor	Moto	or speed	Exec	cutive Funct	ion
N=62	ReyAVL.	Rey				Verbal-	LetterNum	
Test	ave	FigRecall	DigitSymbol	GPdom	GPnondom	Fluency	seq	OMO
GMV1	0.04	0.06	0.30	-0.01	-0.06	-0.06	-0.107	-0.094
GMV2	0.17	0.04	0.32	-0.12	-0.08	-0.08	-0.022	-0.041
GMV6	0.14	0.09	0.36*	-0.11	-0.12	-0.06	0.019	-0.075
GMV7	0.13	0.13	0.28	-0.11	-0.160	-0.08	-0.035	0.058

Prakash et al., J. Neurovirol. (2017) 23:273

Follow-up Group Discriminating Components-ALFF

Follow-up Group Discriminating Components-GMV

HIV

CON

Linked components

- r=-0.34, p=0.0002
- Components share same index evidence for interaction between modalities

Follow-up Correlations With Clinical Measures & Age-Adjusted Neuropsych. Scores

	N=41	CD4 nac	lir CD4/CD8 ratio	Plasma HIV RNA	CD4+ cell count	Hemoglobi	n	
	ALFF1	0.	0.0	0 -0.05	0.03	-0.1	14	
	ALFF2	0.	0.0	3 -0.03	0.04	-0.	17	
	ALFF7	0.	0.0	-0.06	0.04	-0.	15	
	GMV2	0.	28 0.0	7 0.14	0.19	-0.	12	
	GMV6	0.	39 0.12	2 0.21	0.28	-0.(06	
	Verbal	Visual						
Domain	memory	memory	Psychomotor	Motor	speed	Execu	utive Function	on
N=57	ReyAVL.	Rey				Verbal-	LetterNum	
Test	ave	FigRecall	DigitSymbol	GPdom	GPnondom	Fluency	seq	OMO
ALFF1	-0.11	0.16	-0.33	0.02	0.04	-0.10	-0.093	-0.089
ALFF2	-0.04	0.20	-0.23	-0.05	-0.03	-0.03	-0.033	0.048
ALFF7	0.07	0.17	-0.23	-0.09	0.04	0.06	-0.052	0.112
GMV2	-0.001	-0.28	0.06	0.05	0.10	-0.06	-0.238	-0.142
GMV6	-0.10	-0.24	0.18	0.06	0.16	-0.07	-0.144	-0.177

oloav

Overall summary

- Graph theory analysis showed decreased network efficiency at both timepoints in HIV
- Top group discriminating nodes changed over time, indicative of network reorganization
- Fusion analysis identified structural components at baseline and functional components at follow-up that distinguished between HIV & CON.
- Expression of these networks were associated with neurocognitive performance and CD4 nadir.

Future Directions

- Construct advanced model to link these identified brain measures to behavioral & blood measures.
- Currently collecting 10 year follow-up in ACE study participants with MRI measures tailored to query vasculopathy.
 - Relate early multimodal neuroimaging findings to longterm vascular outcome.

Acknowledgement

- Mentor
 - Ann Ragin, PhD (NU Radiology)
- Collaborators
 - Ajay Kurani, PhD (NU PTHMS)
 - James Higgins, BS (Stony Brook School of Medicine)
 - Guixiang Ma, PhD (Intel labs)
- Funding: CFAR Pilot award, NINDS R21NS122511
- Participants of Chicago Early HIV study
- Center for translational imaging (CTI), Neuroimaging