Key to possible HIV cure may lie in mechanisms behind how it replicates.
A team led by Judd Hultquist, PhD is using new advances in CRISPR gene-editing technology to uncover new biology that could lead to longer-lasting treatments and new therapeutic strategies for Human Immunodeficiency Virus (HIV).
The HIV epidemic has been overlooked during the COVID-19 pandemic but represents a critical and ongoing threat to human health with an estimated 1.5 million new infections in the last year alone.
Drug developers and research teams have been searching for cures and new treatment modalities for HIV for over 40 years but are limited by their understanding of how the virus establishes infection in the human body. How does this small, unassuming virus with only 12 proteins — and a genome only a third of the size of SARS-CoV-2 — hijack the body’s cells to replicate and spread across systems?
A cross-disciplinary team at Northwestern sought to answer that very question.
In the team’s new publication in Nature Communications, scientists used a new CRISPR gene-editing approach to identify human genes that were important for HIV infection in the blood, finding 86 genes that may play a role in the way HIV replicates and causes disease, including over 40 that have never been looked at in the context of HIV infection.
The study proposes a new map for understanding how HIV integrates into our DNA and establishes a chronic infection.
“The existing drug treatments are one of our most important tools in fighting the HIV epidemic and have been amazingly effective at suppressing viral replication and spread,” said Northwestern’s Judd Hultquist, a co-corresponding author. “But these treatments aren’t curative, so individuals living with HIV have to follow a strict treatment regimen that requires continual access to good affordable health care — that’s simply not the world we live in.”
Hultquist said with more understanding of how the virus replicates, treatments could one day become cures.
Hultquist is associate director of the Center for Pathogen Genomics and Microbial Evolution at Northwestern University Feinberg School of Medicine and a key member of the CFAR Viral Pathogenesis Core.